منابع مشابه
Magic Structures of Helical Multi-shell Zirconium Nanowires
The structures of free-standing zirconium nanowires with 0.6−2.8 nm in diameter are systematically studied by using genetic algorithm simulations with a tight-binding many body potential. Several multi-shell growth sequences with cylindrical structures are obtained. These multi-shell structures are composed of coaxial atomic shells with the threeand four-strands helical, centered pentagonal and...
متن کاملMulti-shell gold nanowires under compression
Deformation properties of multi-wall gold nanowires under compressive loading are studied. Nanowires are simulated using a realistic many-body potential. Simulations start from cylindrical fcc (111) structures at T = 0 K. After annealing cycles axial compression is applied on multi-shell nanowires for a number of radii and lengths at T = 300 K. Several types of deformation are found, such as la...
متن کاملElectronic and atomic shell structure in aluminium nanowires.
We report experiments on aluminium nanowires in ultra-high vacuum at room temperature that reveal a periodic spectrum of exceptionally stable structures. Two 'magic' series of stable structures are observed: at low conductance, the formation of stable nanowires is governed by electronic shell effects whereas for larger contacts atomic packing dominates. The crossover between the two regimes is ...
متن کاملMorphology of epitaxial core-shell nanowires.
We analyze the morphological stability against azimuthal, axial, and general helical perturbations for epitaxial core-shell nanowires in the growth regimes limited by either surface diffusion or evaporation-condensation surface kinetics. For both regimes, we find that geometric parameters (i.e., core radius and shell thickness) play a central role in determining whether the nanowire remains cyl...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Material Sciences
سال: 2012
ISSN: 2160-7613,2160-7621
DOI: 10.12677/ms.2012.21010